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Type la Supernovae (SNe la): Observations
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® Since the pioneering
work of Baade & Zwicky
in the 1930s, the light
curves of SN la have
been known to be
remarkably homogenous

® |n 1938, Baade proposed

using them as
cosmological standard
candles, and until 1986,
most researchers
assumed SNe |a were
identical



Scaled Flux + Constant

SN la Optical Spectral Evolution
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SYNAPPS fits 2 spectra of SNe la

g are dominated by
1.5/-16.1d ® Nal

features due to
intermediate mass
elements (Ca, Si, S,

Mg)

® Within a few weeks
after maximum light,
the spectra show
mostly features due
to Fe-peak elements

. i W, S ® At all phases, no
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Parrent et al. 2012 observed




SN la UV/Optical/Near-IR Light Curves
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® The luminosity of the SN is
powered by the radioactive
decay of >®Ni produced in the
explosion

® >5Ni = >*Co = >°Fe
6.1 days 77.2 days

® The secondary maximum
observed in theV to near-IR
filters is related to the
recombination of Fe lll to Fe Il
in the inner ejecta

Contreras et al. 201 5]




SN la Optical Light Curves:
Early Indications of Inhomogeneity

Magnitudes
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® CCD photometry in

the late-1980’s and
early-1990’s
demonstrated that the
light curves of SNe la
displayed a range of
decline rates

The light-curve
morphology in the NIR
is markedly different
from that in the optical
with a pronounced

secondary maximum in
Y JHK



The Luminosity-Decline Rate Relation

The luminosity-decline rate relation is a
fundamental characteristic of “normal’” SNe la
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The Origin of the Luminosity-Decline Rate Relation

Following maximum light, the SN colors are increasingly
governed by the blanketing of numerous Fe |l and Co |l
lines that particularly affect the B band
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Because dimmer SNe la are cooler, they experience an
earlier onset of Fe lll to Fe |l recombination, resulting in

more rapid evolution of the SN colors to the red




The Origin of the Lum|n05|ty Decline Rate Relation

B \' R . MZ'bno 70M,

ghter)
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Normalized Flux

Day +0 | 3

Normalized Flux

Kasen & Woosley 2007

The faster B-band decline rate of dimmer SNe la
thus reflects their faster ionization evolution



Correlation of Decline Rate with *°Ni Mass
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A temperature sequence is observed as a function of
decline rate, corresponding to the amount of *®Ni
produced in the explosion (typically 0.4-0.9 solar masses)



Evidence for Diversity from Si Il A6355
Expansion Velocities
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Benetti et al. (2005):

e “|ow-velocity
gradient” (LVG)

e “High-velocity
gradient” (HVQ)

o “FAINT”

Wang et al. (2013):
e “Normal’
e “High-velocity” (HV)



Evidence for Asymmetrical Explosions

e [ ate phase nebular spectra of SNe la reveal large velocity
shifts in the [Fe Il] A7155 and [Ni II] A7388 emission lines

e The shifts are correlated with the velocity gradient of the Si |l
A6355 absorption at early phases
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M, - 0.75(Am - 1.1) (mag)
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High-Velocity SNe la:
A Distinct Population?

e The reddening law for HV SNe la appears to be different than

that for LV SNe

e HV SNe la are more concentrated in the inner and brighter
regions of their host galaxies than are normal-velocity SNe la.
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Normalized Flux
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Evidence for Circumstellar Material (CSM):
Variable Na | D Absorption
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The host Na | D profiles of a handful of reddened HV SNe la have been

seen to vary, presumably due to recombination of a pre-existing CSM
after photoionization by UV photons from the SN explosion



Evidence for CSM: Sternberg et al. (2011)

Milky Way (QSO+SNe) SNe Ia

31%

32.4%

B Blueshifted
I Redshifted

B Single/Symmetric

36.6%

* The SN la sample displays a strong preference for blueshifted structures
(confirmed by Maguire et al. 2013 using different definition of zero velocity)

* The Milky Way sample shows no significant preference, nor do SNe Il

* Blueshifted structures were interpreted as signatures of gas outflows from
the supernova progenitor systems



Normalized Intensity

Na | and K | Absorption in SNe la
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Results for the Na | and K | lines
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5780 A DIB Absorption in SNe la
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Results for the 5780 A ib
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Log Flux F, + Constant
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High-Velocity Features of Ca and Si

¢ High velocity absorption due to Ca Il and Si Il are commonly

observed in the early-time spectra of SNe la

® Their origin remains a mystery
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High-Velocity Features of Ca and Si
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Polarization of SNe la

* Type la supernovae are more polarized in the outer layers than in the
Inner layers

e The continuum polarization is low, showing that the explosion is nearly
spherical, but the line polarization can be very strong

e SNe with a faster light-curve decline rate Polarization Across Si Il 6355
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Correlation with Host Galaxy
Morphology

Fast-declining, less-luminous SNe la are
found preferentially in early-type galaxies
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and Progenitor Age
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Ni Mass

Similar correlations exist
with star formation rate and
luminosity-weighted age
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SN year™' (10'° m,)™"

SNe la Rates

® The delay time between the birth of the progenitor system and
the explosion as a SN la (the “delay time distribution”, or DTD)

is proportional to t

® The observed SN la rate decreases with increasing galaxy mass
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ABSTRACT

Using a sample of 178 supernovae in external galaxies, we find three pieces of evidence that
Type I supernovae are associated with a young stellar population: (1) The number of Type
I supernovae per unit luminosity is much higher in I0 galaxies than in any other galaxy type;
this result cannot be ascribed to small-number statistics, and it implies that the supernovae
are related to the peculiarities defining the I0 class, namely signs of intense star formation
in an otherwise old population. (2) The number of Type I supernovae per unit luminosity
increases from early through late Hubble types; if such supernovae arose in the very old
‘ (bulge or old-disk) population, the opposite trend would be expected. (3) The Type I
supernova rates in spiral galaxies are proportional to their present star formation rates, as
estimated from colors; this result again implies that fairly short-lived stars become Type I
\ supernovae. We discuss the star formation rate that is implied for elliptical galaxies if their
supernovae have the same origin as those in spirals and irregulars; signs of such star
formation could have escaped attention so far, but not by a wide margin, so it is not clear
whether a distinct type of supernova need be postulated. In any case, most Type I supernovae
\ must come from short-lived stars.
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SNe la: Progenitor Models

® |n order to explain the fact
that some SNe la occur in
old stellar populations and
lack hydrogen, Hoyle &
Fowler (1960) first proposed
that they were the
observational signature of
the thermonuclear &
disruption of a degenerate '
star, presumably in a binary |
system

® However, many uncertainties
still exist regarding the
nature of the progenitors
and the explosion
mechanism

® <«— SN 1994D




Chandrasekhar Mass Models

Progenitor scenarios have traditionally focused on
getting a C/O white dwarf (WD) to ignite by having

it approach or exceed the Chandrasekhar mass of
.44 Mo:

® Single Degenerate:WD accretes matter from a non-

degenerate companion causing it to explode near
the Chandrasekhar limit (VWhelan & Iben 1973)

® Double Degenerate: Two WDs in a close binary

systems merge whose combined mass exceeds the
Chandrasekhar limit (VWebbink 1984; Iben & Tutukov
| 984)



Delayed Detonation Mechanism

® A problem common to Chandrasekhar mass models is
that the energetics and spectra do not match the
observations unless as an initial subsonic deflagration
allows the WD to expand and, at the right time,

spontaneously to evolve into a supersonic detonation
(Khokhlov 1991)

® Pure deflagrations would produce a subclass of sub-

luminous SNe la — perhaps corresponding to the
2002cx-like events (a.k.a." Type lax™)

® Pure detonations of would burn the C+O mixture to
Fe—peak elements entirely, in conflict with observations

that show intermediate—mass elements at maximum
light



Violent Mergers and Collisions of C/O
White Dwarfs

® Recent 3D hydrodynamical modeling suggests that
the merger of two C/O WDs may actually occur
explosively (Pakmor et al. 201 3)

® As the material of the disrupted secondary WD is
accreted violently onto the primary, it is compressed
and heats up the surface

® [f the temperature is high enough, a C detonation
wave can propagate into the central region of the
WD, with the amount of *°Ni produced being
proportional to the mass of the primary WD

® Direct collisions of a WD-WD pair in a triple system
could lead to the same scenario (Katz & Dong 2012)



Double Detonation Model

Accretion from a non-degenerate helium star or a
helium WD can accumulate a He layer that is
sufficiently massive and degenerate that ignition
becomes explosive (Taam 1980)

The detonation drives a shock wave into the core
of the WD that ignites the C at or near the center

The He layer must be sufficiently small so as not to
produce early-time spectra rich in *®Ni

Requires WD mass to be in range 0.8-1.1 Mo

Because the sub-Chandrasekhar WD has a lower
density throughout, the detonation does not burn
the entire star to iron-peak elements



Recent Observational Advances:

SN 201 Ife in MIO|

SN 201 lfe, the nearest SN la in the last 25 years, was about
as typical as a SN la can be in all of its observed properties,
making it extremely valuable for addressing the general

question of the nature of the progenitors of SNe la

Li et al. 201 |
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SN 201 Ife in M101|

Li et al. (201 |) analyzed deep
pre-explosion HST images of
the site of the event

No source was detected at the
SN position

These data strongly rule out
the presence of a red giant

Two Galactic recurrent novae
(RS Oph & T CrB) would have
been detected, as would the
He nova V445 Pup in

quiescence

Main sequence and sub-giants
with masses < 3.5 Mo are

allowed, as would be a
recurrent nova like U Sco



SN 201 Ife in MIO]

® SN 201 | fe was discovered

within hours of “first light” —  Rabinak and Waxman, 2011
Kasen 2010 R—10R.
® Bloom et al. (2012) used a -16 Piro et al., 2010
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non-detection obtained 8
hours before discovery to

place a limit on the initial
stellar radius of R+ < 0.02 Ro

from shock outbreak models
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g-band absolute magnitude

® However, Piro & Nakar
(2013) argued that the
explosion time was not known
to better than 0.5 days,
which weakens the Bloom et
al. upper limit to R+ < 0.1 Ro

2.0

days since explosion

Bloom et al. 2012




SNR 0509-67.5 in the LMC

® A light echo spectrum of SNR 0509-67.5 in the LMC obtained by

Rest et al. (2008) showed it to have been a slow-declining SN la
that exploded 400 * 50 years ago

® Schaefer & Pagnotta (2012) used
HST images to show that there are
no stars down to Lv = 0.04 Lvo in

the area around the remnant’s
geometrical center that could be

" ® e
A

[ Schaefer & Pagnotta 2012 ]

popu
® T[his

ated by a runaway donor star

uminosity corresponds to

late-K-type main-sequence stars of

Mass

~0.5 Mo and essentially rules

out all traditional single-degenerate
companions



Collision of the Supernova Ejecta
with the Companion

® Kasen (2010) showed that the collision of the supernova ejecta with
its companion star should produce detectable emission in the hours
and days following the explosion

® Radiative diffusion from the shock-
heated ejecta is predicted to
produce optical/UV emission
which exceeds the radioactively
powered luminosity of the
supernova for the first few days
after the explosion

® This emission should be most
prominent for viewing angles
looking down upon the shocked
region (or about 0% of the time)




log,, bolometric luminosity

Collision of the Supernova Ejecta
with the Companion

® The strength of the emission provides information on the radius of

the companion

® |t is strongest in the ultraviolet, but weaker at optical bandpasses
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g-band absolute magnitude

SN 201 Ife in MI10|

® Early observations of the rising light curve of SN 201 Ife in the
optical and UV give an upper limit of R« < | Ro for the size of the

companion

- Rabinak and Waxman, 2011
- Kasen 2010

R=10R .

-16 Piro et al., 2010
..... Lat2 e | e e

days since explosion

Bloom et al. 2012
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Relative flux

o

a Relative flux

Relative flux

Kepler Observations of 3 SNe la

] ] | | L l’ ] 1 1 ]’

KSN 2012a
A =0.66

KSN 2011b

Rest-frame age (days)

® Kepler monitored 400 galaxies for two
to three years, discovering five
supernovae near explosion

® Three events observed in 201 | and
2012 are likely SNe la, with two clearly
showing the presence of a secondary
‘bump’ in the post-maximum light curve

® The continuous coverage reveals no
signatures of companion impacts within
the few days before first light, when the
actual explosion must have occurred

Olling et al. 2015 ]
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® Marion et al. (2015) report
evidence for excess blue light from
the Type la supernova SN 2012cg at
|5 and |6 days before B maximum

® The emission is consistent with
predictions for the impact of the
SN on a non-degenerate binary
companion — the data suggest
that a main sequence companion of
about 6 Mo is the smallest allowed

companion



Ejected mass (M )

**Ni and Ejecta Masses

e Stritzinger et al. (2006) and Scalzo et al. (2014) have reconstructed the

ejecta masses of SNF SNe la using the semi-analytic formalism of Arnett
(1982) and Jeffries (1999)

* Scalzo et al. found that ejected mass was found to correlate strongly with
light curve decline rate

* Fast-declining SNe la (Am|5(B) > 1.6) appear to have sub-Chandrasekhar
ejecta masses

3.0 ; 3.0
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Scalzo et al. 2014




**Ni and Ejecta Masses

* Scalzo, Ruiter, & Sim (2014) used the relation between the ejected mass
and decline rate from Scalzo et al. (2014) to derive ejected masses ejecta
and >®Ni masses for a sample of 337 SNe la with redshifts z < 0.7

* 25-50% of normal SNe la appear to be inconsistent with Chandrasekhar-
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Conclusions

®* Whatever mechanism(s) can make SNe la, they must in
combination reproduce the following properties:

* The observed smoothness of the luminosity-decline
relation

* The range of >°®Ni masses underlying this sequence
* The lack of evidence for large asphericities in the ejecta

* The dependence of explosion rates and light curve
widths on galaxy mass and star formation rate

* The power law dependence of the delay time distribution



Conclusions

* |In general, the unsuccessful search for evidence of the
companions to normal SNe la would seem not to favor the
single-degenerate model, but at least one events (2012cg)
seems likely to have had a non-degenerate companion (or
circumstellar material) — we need to obtain both imaging
and spectroscopy of many more SNe la within hours of
outburst to get a better idea of what is going on here

* The power law dependence of the delay-time distribution is
difficult to explain in the single-degenerate model, but arises

fairly naturally in double-degenerate scenarios and for double
detonations of a CO-He WD pair

* The evidence for circumstellar material in SN la progenitor
systems is mixed — many seem to explode in a relatively
clean environment



Conclusions

* |t is easy to believe that SNe la are produced through more
than one mechanism

* My favorite candidates for subgroups are:
* The fast decliners (Am|15(B) = 1.6)
* High-velocity SNe la



Conclusions

* |t is easy to believe that SNe la are produced through more
than one mechanism

* My favorite candidates for subgroups are:
* The fast decliners (Am|15(B) = 1.6)
* High-velocity SNe la

® Some unanswered questions:

® Can the Maeda et al. (2010) viewing angle hypothesis
explain the diversity of normal SNe la?

* Why do some SNe la appear to be associated with
regions of star formation with unusual dust properties!?

* Why do SNe la with “blueshifted” Na | D profiles show
anomalously high Na | column densities!?

®* What are the High Velocity Features telling us?



Thank you!




