

Palomar Transient Factory and the Search for Progenitors Channels of SNe Ia

Southampton

- SNe govern the heavy element production of the Universe and cycle matter in galaxies.
 - A SN rate provides insight into metal enrichment on a cosmic timescale.
 - Are Supernovae responsible for dust in Galaxies?
- · Shockwaves inject energy into the ISM.
- Used as a test of stellar evolution models.
- Insight into the birth rate of compact objects.
- A delay-time-distribution from the Ia rate can constrain progenitor models for this sub-class.

A Rate Equation Equation

 $r(v) = \frac{1}{V} \sum_{i} \frac{1+z_i}{\epsilon_i \Delta T_i}$

- ε Efficiency in detecting each supernova
- T Time window in which search was done
- V Volume surveyed

Dashed lines are evolution models of the cosmic star formation history.

- Largest unbiased sky survey
- 3-5 day mean cadence
- >100GB data per night
- ~7.26°² FOV, 1.01" per pixel

Provides excellent low redshift statistics:

Perfect for a SN rate...hopefully. But a lot of hard work!

FACTORY

1		
	R-band	g-band
images	1.82M	305k
subtractions	1.52M	146k
references	29.2k	6.3k
Candidates	890M	197M
Transients	42945	3120
references Candidates Transients	29.2k 890M 42945	6.3k 197M 3120

All in 851 nights between 2009 and 2012.

An image is an individual chip (~0.7 sq. deg.)

The database is now 1 TB.

PTF Key Projects		
Various SNe	Dwarf novae	
Transients in nearby galaxies	Core collapse SNe	
RR Lyrae	Solar system objects	
CVs	AGN	
AM CVn	Blazars	
Galactic dynamics	LIGO & Neutrino transients	
Flare stars	Hostless transients	
Nearby star kinematics	Orphan GRB afterglows	
Type Ia Supernovae	Eclipsing stars and planets	
Tidal events	H-alpha ½ sky survey	

The power of PTF resides in its diverse science goals and follow-up.

PALOMAR TRANSIENT FACTORY

Liverpool Telescope

The power of PTF resides in its diverse science goals and follow-up.

i.e. Everyone chipped in to get spectroscopy for everyone else...

FACTORY

Stat Sheet:

- 1793 SN discovered and spectroscopically confirmed between 2009-2012
- 1258 SNe Ia over this time period (6 Mpc < d < 800 Mpc)

PTF Observation Sample

- 13,500 raw images from 2009-2012
- Representative sample of the conditions over the entire survey.
- 60 fakes stars placed in each image
 - 90% in galaxies
 - 10% hostless
- 7,000,000 fake stars added
- Store fake star parameters in PSQL database

Image subtraction and Machine Learning

- Replicate the real-time PTF transient detection pipeline
- Run machine learning on all candidates (Bloom et al. 2012)
- Store candidates in PSQL database
- Compare recovered candidates to fake stars

Recovery Efficiencies

Simulating the PTF survey

E(B-V)<0.1

326 Spectroscopically confirmed la

Simulating Supernovae

- Use sncosmo python library to generate lightcurves
- Follow a SALT2.4 model
- Parameters from Betoule et al. 2014
- $\alpha = 0.141$
- $\beta = 3.101$

• σ_{int} : Drawn from Gaussian of width 0.15

A Python Library for Supernova Cosmology

- x₁: Flat, -3 to 3
- c: Flat, -0.3 to 0.3
- z: Flat, 0 to 0.1

$M = -19.05 - \alpha x_1 + \beta c + \sigma_{int}$

Simulated Lightcurves

- Use Iridis4 supercomputer
- Simulated 104.5 million supernovae
- ~3,000 deg² sky
- z<0.12
- Simulate PTF survey between 1 May 2010 and 31st October 2010

Supernova detection probability map Date: 2455317.5

Spectroscopically Confirmed Sample

pull

- 27 spectroscopically confirmed SNe la
- 12 pass redshift and observational cuts with a requirement of 5+ points total separated fux ($ZP_{AB}\!=\!25.0$) by 4+ days
- Lightcurves fit with sncosmo
- Fits parameters interpolated on to find efficiency

Preliminary Result

• Simulation finished 19th June

$$1.1 \times 10^{-5} \mathrm{SNe \ Ia \ Mpc^{-3} \ yr^{-1}}$$

- ~2x lower than other rates
 - Lower limit as this is just a spectroscopic sample (assumes we have missed nothing)
 - Small fraction of our total survey area

Early Applications: Calcium Rich Transients

- Nebular spectra dominated by Calcium.
- Rapid rise, t_{rise}~ 12- 15 days
- M_R=-15.5 to -16.5
- Appear offset from their hosts
 - >33kpc
- Kasliwal et al. 2012
- TD around IMBH, Triple system?? (Sell et al. 2015)

Pushing on...

Next up – the rest of 2010 and then everything else...

Major Challenges...

We found a lot, but.... in several ways we didn't make it easy on ourselves for doing the rates.

- We switched between g & R, but almost rarely on the same fields thus there are large gaps in each.
- Constantly building new references throughout the year and would typically stay on a field for ~2 month maximum.
- Daily cadence fields had higher priority than 3-5 day cadence fields, thus there were often large gaps in the latter.
- Picked fields near equator, so moon hammered them
- AGN suck...

Criteria Moving Forward

Current criteria (everything will be done through database):

- March 1 2010 October 31 2010 in SDSS DR10 fields
- 5+ candidates within 3" spread out over 3+ days with a nondetection ahead of first detection and all detection brighter than 20th mag and with a decent real-bogus score.
- No negative detections during this timeframe
- Not within 5" of a known SDSS star (< 19th mag)

246,765,552 detections get whittled down to 15k potential SN candidates we "missed".

501 SNe Ia in all of 2010 get trimmed down to 97 which pass cuts.

AGN suck...

Lovely AGN which we happened to build a reference for during a quiescent phase...

r = 17.1 (1757.8 d) | Upload New Photometry

z = 0.032589 | Upload New Spectroscopy DM (approximate) = 35.72

What should we calculate next (02ic, 02cx, etc.)?