The Best Path to Constraining Dark Energy

Kaisey Mandel

ApJ 731, 120 (2011) arXiv1402.7079

See also Andy Friedman et al. CfaIR2 arXiv1408.0465

And 2012cg Howie Marion et al. Interacting SN Ia! arXiv:1507.07261

Another Good reason: Infrared Light Curves are Different

Mean Absolute Intrinisc BVIYJH $\Delta m15(B)=1.1$ Normal SN Ia

Evidence for a SN Ia companion!

SN 2012cg: EVIDENCE FOR INTERACTION BETWEEN A NORMAL TYPE Ia SUPERNOVA AND A NON-DEGENERATE BINARY COMPANION

G. H. MARION^{1,2}, PETER J. BROWN³, JOZSEF VINKÓ^{1,4}, JEFFREY M. SILVERMAN^{1,5}, DAVID J. SAND⁶, PETER CHALLIS², ROBERT P. KIRSHNER², J. CRAIG WHEELER¹, PERRY BERLIND², WARREN R. BROWN², MICHAEL L. CALKINS², YSSAVO CAMACHO^{7,8}, GOVINDA DHUNGANA⁹, RYAN J. FOLEY^{10,11}, ANDREW S. FRIEDMAN^{12,2}, MELISSA L. GRAHAM¹³, D. ANDREW HOWELL^{14,15}, ERIC Y. HSIAO^{16,17}, JONATHAN M. IRWIN², SAURABH W. JHA⁷, ROBERT KEHOE⁹, LUCAS M. MACRI³, KEIICHI MAEDA^{17,18}, KAISEY MANDEL², CURTIS MCCULLY¹⁴, VIRAJ PANDYA^{7,20}, KENNETH J. RINES²¹, STEVEN WILHELMY²¹ AND WEIKANG ZHENG¹³

Draft version August 2, 2015

ABSTRACT

We report evidence for excess blue light from the Type Ia supernova SN 2012cg at fifteen and sixteen days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a normal SN Ia. Sixteen days before maximum light, the B - V color of SN 2012cg is 0.2 mag bluer than for other normal SN Ia. At later times, this supernova has a typical SN Ia light curve, with extinction-corrected $M_B = -19.62 \pm 0.02$ mag and $\Delta m_{15}(B) = 0.86 \pm 0.02$. Our data set is extensive, with photometry in 7 filters from 5 independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity $v_{Si} = -10,500$ km s⁻¹. Comparing the early data with models by Kasen (2010) favors a main-sequence companion of about 6 solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint.

Subject headings:

Marion et al.

One good reason to observe SN Ia in the infrared

Seeing through the dirt

Seeing through the dirt

In the IR SN IA really are standard candles! And there's less trouble with dust.

THE ASTROPHYSICAL JOURNAL, 731:120 (26pp), 2011 April 20

Could we get this 2x advantage for the highz supernovae? RAISIN

SN IA in the IR = RAISIN

PanSTARRS: A Supernova Discovery Machine

Medium-Deep Fields

Good light curves at z~0.4 Every 4 days griz 7 square degrees 0.26"/pixel Dozens of supernova candidates every month!

Find SN Ia with Pan-STARRS: difference imaging with Harvard's Odyssey Cluster

Get spectrum with MMT (or Magellan, Gemini or Keck) 358 Spectroscopic SN Ia

Get IR with WFC3

Goal: better knowledge of dark energy by avoiding systematic errors

ISHIHARA COLOR BLINDNESS TEST PLATE 12

Dark Energy Survey

External Collaborators: Spectra of SN Ia with MMT & Magellan to demonstrate targets for RAISIN2 w/ Masao Sako and Bob Nichol and others...

Simulated Hubble Diagram

More RAISINS, thank you HST TAC!

Based on IR + Optical for 25 additional SN Ia at z~0.5 from DES

Low-z from CFAIR2 + Carnegie

Smaller systematic errors in distances based on good behavior of SN Ia in the IR at low-z & at cosmological distances

 $\sigma \sim +/-0.07$ (Betoule $\sigma = +/-0.06$)

The IR is not strongly correlated with the Optical (and that is good!)

Two Questions

1> Why is it that supernovae that differ in their optical emission are less different in the IR?
(Could mask differences in their origin... even for 2012cg...)

2> If you think you know the answer to #1, can you test it with spectrum synthesis in the NIR and comparison to the spectra compiled by the CSP & CfA?

Postdoc Available!

- Please see me
- Support from NSF and from the Gordon and Betty Moore foundation
- Located in Cambridge, MA or vicinity of Palo Alto, CA