Clues to SN Ia progenitors from LCOGT

Andy Howell

Las Cumbres Observatory Global Telescope Network

University of California Santa Barbara

Simulation by Dan Kasen (Berkeley / LBL)

The Supernova Group at LCOGT

Griffin Hosseinzadeh Graduate Student Andrew Zheng Undergraduate

~ Half of the Supernova Key Project

LCOGT

Iair ArcaviYi CaoAndy HowellAvishay Gal-YGriffin HosseinzadehAriel GoobarCurtis McCullyMansi KasliwStefano ValentiPeter Nugent

South Africa

Bruce Bassett Steve Crawford Eli Kasai Roy Maartens Matthew Smith Abiy Tekola

University of Colorado Alexander Conley Emily Levesque

iPTF

Yi Cao Avishay Gal-Yam Ariel Goobar Mansi Kasliwal Peter Nugent Eran Ofek Robert Quimby Jesper Sollerman

University of Texas Howie Marion Jeffrey Silverman Jozsef Vinko Craig Wheeler

PESSTO

. . .

e.g. Stephen Smartt Mark Sullivan

LaSilla-QUEST

Charles Baltay Nan Ellman Ryan McKinnon David Rabinowitz Emma Walker

Australian National University Michael Childress Richard Scalzo Brian Schmidt Brad Tucker Fang Yuan

KMTNet Dae-Sik Moon

Other

Melissa Graham Eric Hsiao Mark Phillips David Sand

China Guojie Feng Hubiao Niu Lifan Wang Xiaofeng Wang

Chile?

. . .

e.g. Santiago Gonzalez Gaitan

Supernova Key Project

Allocation LCOGT time over 3 years:
 1m time (lightcurves): 2200 hours / year
 2m time (spectroscopy): 700 hours / year

Goals Build a sample of 600 supernovae to:

1. Observe supernovae soon after explosion to search for signs of their progenitors

- 2. Measure Dark Energy
- 3. Do statistical population studies
- 4. Build the first statistical samples of exotic SNe

5. Obtain optical light curves and spectroscopy in support of UV observations, IR imaging and spectroscopy, host galaxy studies, high resolution spectroscopy, and late-time spectroscopy with large telescopes.

What did we observe in year 1?

Major Followup

NTT

PESSTO

Submitted publications within the past year. 18, all with LCOGT data, many others in prep.

1st Author	Year	Journal	Title	
Marion	2015	ApJ, submitted	SN 2012cg: evidence for interaction between a normal Type Ia supernova and a non degenerate binary companion.	
Childress	2015	MNRAS, submitted	Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra	
Morales-Garoffolo	2015	MNRAS, submitted	SN 20011fu: A type IIb supernova with a luminous double-peaked light curve	
IceCube	2015	ApJ	Detection of a Type IIn supernova in optical follow-up of IceCube neutrino events	
Сао	2015	Nature	Ultraviolet Radiation from Supernova-Companion Collision in a Type Ia Supernova	
Fraser	2015	MNRAS, submitted	SN 2009ip at late times - an interacting transient at +2 yrs	
Pastorello	2015	MNRAS	Massive stars exploding in a He-rich circumstellar medium. VI. Observations of two distant type Ibn supernova candidates discovered by La Silla-QUEST	
Pastorello	2015	MNRAS	Massive stars exploding in a He-rich circumstellar medium. V. Observations of the slow- evolving SN Ibn OGLE-2012-SN-006	
Hsiao	2015	A&A	Strong near-IR carbon in the Type Ia supernova iPTF13ebh	
Valenti	2015	MNRAS	SN 2013by: A Type IIL Supernova with a IIP-like light curve drop	
Bose	2015	MNRAS	SN 2013ab: A normal type IIP supernova in NGC5669	
Mauerhan	2015	MNRAS	SN Hunt 248: a super-Eddington outburst from a massive cool hypergiant	
Pan	2015	MNRAS	Type Ia supernova spectral features in the context of their host galaxies	
Inserra	2015	ApJ	OGLE-2013-SN-079: A lonely supernova consistent with a helium shell detonation	
Marion	2015	ApJ	Early observations and analysis of the Type Ia SN 2014J in M82	
Maguire	2014	MNRAS	Exploring the spectral diversity of low-redshift Type Ia supernovae using the Palomar Transient Factory	
Nicholl	2014	MNRAS	Superluminous supernovae from PESSTO	
Graham	2014	ApJ	Clues to the nature of SN 2009ip from photometric and spectroscopic evolution to late times	

02cx / 02es - like SNe

SN 2002cx was a peculiar SN Ia. Properties of this class (see papers by Foley, Jha, Valenti, White, etc.):

- Lower expansion velocities
- Generally fainter than SNe Ia, but don't follow Phillips relation
- Don't necessarily go nebular at late times
- Theoretically: a "failed la?" They may leave a bound remnant.

Properties of SN 2002cx and SN 2002es Families				
Property	02cx-like	02es-like		
Host type	Generally Late	Early		
Host g-i color (mag)	0.59-1.47	1.26-1.58		
Host luminosity (R-band, mag)	-14 to -21	-19 to -22		
Peak luminosity (R-band, mag)	-13 to -19	-18		
Rise time (days)	18–23	14–17		
Decline rate (Δm_{15} , mag)	0.3–1.0	0.6-0.7		
Ti 11 trough?	No	Yes		
Ejecta speed (km s ⁻¹) ^a	4000–9000	4000–7000		

Note.^a At approximately 10 days post-maximum.

iPTF14atg Cao et al. 2015

LETTER

doi:10.1038/nature14440

A strong ultraviolet pulse from a newborn type Ia supernova

Yi Cao¹, S. R. Kulkarni^{1,2}, D. Andrew Howell^{3,4}, Avishay Gal–Yam⁵, Mansi M. Kasliwal⁶, Stefano Valenti^{3,4}, J. Johansson⁷, R. Amanullah⁷, A. Goobar⁷, J. Sollerman⁸, F. Taddia⁸, Assaf Horesh⁵, Ilan Sagiv⁵, S. Bradley Cenko⁹, Peter E. Nugent^{10,11}, Iair Arcavi^{3,12}, Jason Surace¹³, P. R. Woźniak¹⁴, Daniela I. Moody¹⁴, Umaa D. Rebbapragada¹⁵, Brian D. Bue¹⁵ & Neil Gehrels⁹

Yi Cao¹, S. R. Kulkarni^{1,2}, D. Andrew Howell^{3,4}, Avishay Gal–Yam⁵, Mansi M. Kasliwal⁶, Stefano Valenti^{3,4}, J. Johansson', R. Amanullah⁷, A. Goobar⁷, J. Sollerman⁸, F. Taddia⁸, Assaf Horesh⁵, Ilan Sagiv⁵, S. Bradley Cenko⁹, Peter E. Nugent^{10,11}, lair Arcavi^{3,12}, Jason Surace¹³, P. R. Woźniak¹⁴, Daniela I. Moody¹⁴, Umaa D. Rebbapragada¹⁵, Brian D. Bue¹⁵ & Neil Gehrels⁹

Testing theoretical prediction by Kasen 2010

iPTF14atg spectra

iPTF14atg is a peculiar subluminous Type Ia supernova, like SN 2002es.

02es max spectrum was blueshifted by 2000 km/s

+1wk 02es spectrum blueshifted by 1000 km/s

Cao et al. 2015

iPTF14atg: lightcurves

Cao et al. 2015

 $\begin{array}{l} M_B{=}{-}17.8; \ \Delta m_{15}(B) = 1.2 \\ \ Lightcurves from LCOGT (Except PTF r) \\ iPTF14atg is one magnitude fainter at peak than SN 2002es \end{array}$

Shocking in iPTF14atg: lightcurves

Cao et al. 2015

Artist's conception of NASA Swift satellite

Red: data from Swift

Gray: data from other supernovae Blue dashed: Expected effect from shocking hypothesis

SN 2012cg Companion shocking in a normal SN Ia

SN 2012cg: EVIDENCE FOR INTERACTION BETWEEN A NORMAL TYPE Ia SUPERNOVA AND A NON-DEGENERATE BINARY COMPANION

 G. H. MARION^{1,2}, PETER J. BROWN³, JOZSEF VINKÓ^{1,4}, JEFFREY M. SILVERMAN^{1,5}, DAVID J. SAND⁶, PETER CHALLIS², ROBERT P. KIRSHNER², J. CRAIG WHEELER¹, PERRY BERLIND², WARREN R. BROWN², MICHAEL L. CALKINS², YSSAVO CAMACHO^{7,8}, GOVINDA DHUNGANA⁹, RYAN J. FOLEY^{10,11}, ANDREW S. FRIEDMAN^{12,2}, MELISSA L. GRAHAM¹³, D. ANDREW HOWELL^{14,15}, ERIC Y. HSIAO^{16,17}, JONATHAN M. IRWIN², SAURABH W. JHA⁷, ROBERT KEHOE⁹, LUCAS M. MACRI³, KEIICHI MAEDA^{17,18}, KAISEY MANDEL², CURTIS MCCULLY¹⁴, VIRAJ PANDYA^{7,20}, KENNETH J. RINES²¹, STEVEN WILHELMY²¹ AND WEIKANG ZHENG¹³

Draft version August 2, 2015

Draft version August 2, 2015

STEVEN WILHELMY²¹ AND WEIKANG ZHENG¹³

Shocking in SN 2012cg: lightcurves

Marion et al. 2015

Shocking in SN 2012cg: COlOrS Marion et al. 2015

Shocking in SN 2012cg: spectra

Marion et al. 2015

Expect dilution of spectrum by continuum, stronger at early times, shorter wavelengths

SN 2013dh 02cx-like

McCully et al., in prep

SN 2013dh 02cx-like

McCully et al., in prep

SN 2013dh 02cx-like

McCully et al., in prep. — adapted from Stritzinger et al. 2014

SN 2013dh 02cx-like

Representative spectra, there are more.

Velocities near 4000 km/s

McCully et al., in prep

McCully et al., in prep

SN 2014ck 02cx-like

Tomasella et al. 2015

Optical and near infrared observations of SN 2014ck: an outlier among the Type Iax supernovae^{*}

M. BERRARGE, D. Valend, and M. KANA, M. Ense-Moss, D. Harmanen, A. Harutyunyan, G. Hosseinzadeh, ^{4,5} D.A. Howell, ^{4,5} E. Kankare,⁸ C. McCully, ^{4,5} A. Morales-Garoffolo, ⁹ F. Taddia, ¹⁰ L. Tartaglia, ¹ G. Terreran, ^{1,10} M. Turatto¹
W. Ruards-Caroffolo, ⁹ F. Laddia, ¹⁰ L. Tartaglia, ¹ G. Terreran, ^{1,10} M. Turatto¹
Worales-Garoffolo, ⁹ E. Laddia, ¹⁰ L. Tartaglia, ¹ G. Terreran, ^{1,10} M. Turatto¹
Worales-Garoffolo, ¹ E. Vagqia, ¹⁰ F. Tataglia, ¹ G. Terreran, ^{1,10} M. Turatto¹
Worales-Garoffolo, ¹ E. Lagdia, ¹⁰ F. Lattaglia, ¹ G. Letteran, ^{1,10} M. Turatto¹
Worales-Garoffolo, ¹ E. Vagdia, ¹⁰ F. Lattaglia, ¹ G. Terreran, ^{1,10} M. Turatto¹
F. Mousella, ¹ C. Hosseinzadeh, ^{4,2} D.Y. Howell, ^{4,2} E. Kankare, ⁸ C. WcCnlh, ^{4,2}
F. Laddia, ¹⁰ F. Lattaglia, ¹⁰ F. Tattaglia, ¹ G. Letteran, ^{1,10} M. Turatto¹
F. Mousella, ¹ E. Cabbellato, ¹ S. Benetti, ¹ Y. Bastotello, ¹ E. K. Heiso, ⁵ D. Saud', ³

4.2 HST pre-discovery images

nancy: NOTE: Forse si puo' aggiungere di qualche forma questo: $M_V < -8.6$ mag is the threshold suggested for compact star clusters ?) and ?)

Io rifarei la figura 5 facendola piu' chiara e con lettere invece di numeri, e la tabella 7 con la media delle mag.

As mentioned before, another transient, SN 2006fp, was discovered in the host galaxy of SN 2014ck. The nature of this transient was unclear, it could have been either a SN IIn or an outburst of a SN impostor, the latter favoured by the spectral analysis (Blondin et al. 2006). With the purpose to test the nature of SN 2006fp, deep imaging was obtained with the Hubble Space Telescope (HST), using the Wide Field Camera 3 (WFC3) Ultraviolet-Visible (UVIS) Channel (pixel scale of 0.04 pix⁻¹). The UVIS data were

SN 2014ck Lightcurves

Tomasella et al. 2015

 $M_B = -17.37$ $\Delta m_{15}(B) = 1.76$

SN 2014ck Bolometric LC

Tomasella et al. 2015

Peak luminosity, 15 day rise imply 0.08±0.02 M_☉ ⁵⁶Ni.

Whole LC implies $M_{ej} \sim 0.25 \ M_{\odot}$

SN 2014ck spectra

Tomasella et al. 2015

Sill velocity at max: 2500 km/s Half that of 02cx Closer to 08ha (e.g. Ca lines)

E_k~2% of SN la M_{ej}~0.25 M⊙

SN 2014ck composition

Tomasella et al. 2015

Optical spectrum at 2.2d. Blue inset shows w/o Felll

NIR spectrum at 20d

SN 2014ck correlations Tomasella et al. 2015

Conclusions

Early UV or blue light curve excesses are seen in:

- An 02es-like (iPTF14atg; Cao et al. 2015)
- Normal SN Ia (SN 2012cg; Marion et al. 2015).
- The interpretation is shocking by a main sequence or red giant companion.

SN 2013dh (McCully et al. in prep) is an 02cx-like supernova with:

- a large $\Delta m_{15}(B) = 2.1$; $M_B = -16.5$; v~4000 km/s
- a UV spectrum that looks like a SN Ia, but with lower velocities.

SN 2014ck (Tomasella et al. 2014)

- Photometrically like 02cx, but has low velocities (2500 km/s in Si at max).
- Inferred $^{56}\text{Ni}:$ 0.08±0.02 $M_{\odot},$ M_{ej} ~0.25, E_k =2% of a SN Ia.
- Coll, Sill, CII unambiguously seen clearly a thermonuclear explosion.
- Simultaneous permitted and forbidden Ca, Fe, Co lines at late times. Ejecta clumpy?
- There probably isn't a correlation between v_{phot} and $\Delta m_{15}(B)$

LCOGT SN Key Project: On track for 600 SNe over 3 years. Robotic lightcurves and spectra. Rapid-follow-up.

