A New Way to Infer CSM Properties

Ryan Foley University of Illinois

Single Degenerate Wind Accretion

Single Degenerate Wind Accretion

Variable Na Circumstellar Material

Double Degenerate

Double Degenerate

High-Resolution Spectra Probe CSM

Sternberg et al. 2011

High-Resolution Spectra Probe CSM

Sternberg et al. 2011

Equal Blue/Redshifted Fraction for ISM

Equal Blue/Redshifted Fraction for ISM

Equal Blue/Redshifted Fraction for ISM

Many SN la Progenitors Have Winds

SNe la With Variable Na Have Low Rv

2 Values of R_v?

2 Values of R_v?

Explosion Linked to Environment

Explosion Linked to Environment

Foley et al., 2012

Implications

Either:

Multiple progenitor channels where progenitors with winds produce more energetic explosions

Or

Asymmetric explosions with higher velocity ejecta aligned with winds

Blueshifted Systems Are Gas-Rich

Phillips et al., 2013

Blueshifted Systems Are Gas-Rich

Blueshifted/Redshifted Separate Cleanly

ΔEW Separates Gas-Rich/Gas-Poor

ΔEW Works for Low-Resolution Spectra!

Explosion Linked to Environment

PS1

q

SN Cosmology is Currently Limited by the Low-z Anchor Sample

 Table 2: Noise Sources

Briefly...

Noise source	dw
Total Uncertainty	0.072
Statistical Uncertainty	0.050
Systematic Uncertainty	0.052
Photometric calibration	0.045
SN color model	0.023
Host galaxy dependance	0.015
MW extinction	0.013
Selection Bias	0.012
Coherent Flows	0.007

Table 1: Low-z Sets		
Set	Total	Final
JRK07	133	49
CFA3	185	85
CFA4	94	43
CSP	85	45

8 (!!) Different Low-z Samples Combined

PS1

q

SN Cosmology is Currently Limited by the Low-z Anchor Sample

Noise source	dw
Total Uncertainty	0.072
Statistical Uncertainty	0.050
Systematic Uncertainty	0.052
Photometric calibration	0.045
SN color model	0.023
Host galaxy dependance	0.015
MW extinction	0.013
Selection Bias	0.012

Table 2: Noise Sources

Table 1: Low-z Sets		
Set	Total	Final
JRK07	133	49
CFA3	185	85
CFA4	94	43
CSP	85	45

8 (!!) Different Low-z Samples Combined

Briefly...

Low-z Calibration a Real Problem

Scolnic et al., in prep.

The Ideal Low-z Sample

Single System

Well Calibrated/Self-Consistent

Full Sky Coverage w/Multiple Observations

Precisely Measured Filters

Existing Data Reduction Pipeline

Large High-z Sample on Same System

Pan-STARRS Supernova Survey

- 1.8 m mirror
 - 7 deg² Field of View
 - **1.4 Gigapixel Camera**

25% of time for SN Survey

Nightly Observations of ~6 Fields

~400 high-z SNe la

Pan-STARRS Supernova Survey

1.8 m mirror

- 7 deg² Field of View
- **1.4 Gigapixel Camera**

25% of time for SN Survey

Nightly Observations of ~6 Fields

~400 high-z SNe la

Pan-STARRS High-z Sample

Scolnic et al., in prep.

Redefine Low-z Sample

Founding Fathers: Ryan Foley Armin Rest Dan Scolnic Saurabh Jha

Foundation Sample: PS1 Telescope 400–800 z < 0.1 SNe la ~1000 SNe la with 0 < z < 0.8

Redefine Low-z Sample

Founding Fathers: Ryan Foley Armin Rest Dan Scolnic Saurabh Jha

Foundation Sample: PS1 Telescope 400–800 z < 0.1 SNe la ~1000 SNe la with 0 < z < 0.8

Foundation Data

Foley et al., in prep.

Already 37 SNe Ia 39 SOAR/KPNO nights over 2 years +Salt for spectroscopy

Foundation Sample As of Today: 37 SNe

Foundation Sample As of Today: 37 SNe

Two Questions:

Why are the observables (and explosions?) so similar for gas-rich and gas-poor SNe?

How can we further improve the Foundation Survey?